This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

08 Jun. 2013

Sinar Gamma

DEFINISI SINAR GAMMA
Sinar gamma (seringkali dinotasikan dengan huruf Yunani gamma, γ) adalah sebuah bentuk berenergi dari radiasi elektromagnetik yang diproduksi oleh radioaktivitas atau proses nuklir atau subatomik lainnya seperti penghancuran elektron-positron.
Sinar gamma membentuk spektrum elektromagnetik energi tertinggi. Mereka seringkali didefinisikan bermulai dari energi 10 keV/ 2,42 EHz/ 124 pm, meskipun radiasi elektromagnetik dari sekitar 10 keV sampai beberapa ratus keV juga dapat menunjuk kepada sinar X keras. Penting untuk diingat bahwa tidak ada perbedaan fisikal antara sinar gamma dan sinar X dari energi yang sama -- mereka adalah dua nama untuk radiasi elektromagnetik yang sama, sama seperti sinar matahari dan sinar bulan adalah dua nama untuk cahaya tampak. Namun, gamma dibedakan dengan sinar X oleh asal mereka. Sinar gamma adalah istilah untuk radiasi elektromagnetik energi-tinggi yang diproduksi oleh transisi energi karena percepatan elektron. Karena beberapa transisi elektron memungkinkan untuk memiliki energi lebih tinggi dari beberapa transisi nuklir, ada penindihan antara apa yang kita sebut sinar gamma energi rendah dan sinar-X energi tinggi.
Sinar gamma merupakan sebuah bentuk radiasi mengionisasi; mereka lebih menembus dari radiasi alfa atau beta (keduanya bukan radiasi elektromagnetik), tapi kurang mengionisasi.
Perlindungan untuk sinar γ membutuhkan banyak massa. Bahan yang digunakan untuk perisai harus diperhitungkan bahwa sinar gamma diserap lebih banyak oleh bahan dengan nomor atom tinggi dan kepadatan tinggi. Juga, semakin tinggi energi sinar gamma, makin tebal perisai yang dibutuhkan. Bahan untuk menahan sinar gamma biasanya diilustrasikan dengan ketebalan yang dibutuhkan untuk mengurangi intensitas dari sinar gamma setengahnya. Misalnya, sinar gamma yang membutuhkan 1 cm (0,4 inchi) "lead" untuk mengurangi intensitasnya sebesar 50% juga akan mengurangi setengah intensitasnya dengan konkret 6 cm (2,4 inchi) atau debut paketan 9 cm (3,6 inchi).
Sinar gamma dari fallout nuklir kemungkinan akan menyebabkan jumlah kematian terbesar dalam penggunaan senjata nuklir dalam sebuah perang nuklir. Sebuah perlindungan fallout yang efektif akan mengurangi terkenanya manusia 1000 kali.
Sinar gamma memang kurang mengionisasi dari sinar alfa atau beta. Namun, mengurangi bahaya terhadap manusia membutuhkan perlindungan yang lebih tebal. Mereka menghasilkan kerusakan yang mirip dengan yang disebabkan oleh sinar-X, seperti terbakar, kanker, dan mutasi genetika.
Dalam hal ionisasi, radiasi gamma berinteraksi dengan bahan melalui tiga proses utama: efek fotoelektrik, penyebaran Compton, dan produksi pasangan.

RADIOAKTIVITAS – SINAR GAMMA
Sinar gamma begitu istimewa dibandingkan dengan sinar/partikel radioaktif lainnya dikarenakan dia tidak memiliki massa dan muatan. Sinar Gamma memiliki panjang gelombang yang paling kecil dan energi terbesar dibandingkan spektrum gelombang elektromagentik yang lain, (sekitar 10 000 kali lebih besar dibandingkan dengan energi gelombang pada spektrum sinar tampak). Selain itu, sinar gamma memiliki daya ionisasi yang paling rendah namun jangkauan tembus yang paling besar dibandingkan sinal beta dan alfa,
Sinar gamma muncul dari inti atom yang tidak stabil dikarenakan atom tersebut memiliki energi yang tidak sesuai dengan kondisi dasarnya (groundstate). Energi gamma yang muncul antara satu radioisotop dengan radioisotop yang lain adalah berbeda – beda dikarenakan setiap radionuklida memiliki emisi yang spesifik. Sinar gamma juga dapat ditemui di dalam alam semesta, dimana sinar gamma berjalan melintasi jarak yang teramat luas di alam semesta , yang kemudian pada akhirnya terserap oleh atmosfer bumi. Perlu diketahui, panjang gelombang yang beberbeda pada gelombang elektromagnetik akan menembus atmosfer dengan kedalaman yang berbeda pula.
Karena daya tembusnya yang begitu tinggi, sinar gamma mampu menembus berbagai jenis bahan, termasuk jaringan tubuh manusia. Material yang memiliki densitas tinggi seperti timbal sering digunakan sebagai shielding untuk memperlambat atau menghentikan foton gamma yang memancar.
Sinar gamma awalnya ditemukan oleh seorang fisikawan prancis yang bernama Henri. Pada waktu itu, tahun 1896, Henri menemukan mineral uranium yang ternyata menghitamkan plat fotografi meskipun dilapisi oleh lapisan kertas buram tebal.
Sebelum itu, Rontgen telah menemukan Sinar- X dan Becquerel melihat bahwa sinar yang dipancarkan oleh uranium tersebut mirip dengan sinar X, sehingga ia menyebut sinar tersebut “metallic phosphorescence.”
Untuk mengetahui secara mendalam tentang sinar gamma tentu perlu diketahui macam interaksi yang terjadi pada sinar gamma terhadap materi yakni,
  1. Efek Fotolistrik
  2. Efek Compton
  3. Produksi pasangan
Daya tembus dari foton gamma memiliki banyak aplikasi dalam kehidupan manusia, dikarenakan ketika sinar gamma menembus beberapa bahan, sinar gamma tidak akan membuatnya menjadi radioaktif. Sejauh ini ada tiga radionuklida pemancar gamma yang paling sering digunakan yakni cobalt-60, cesium-137 dan technetium-99m.
Cesium -137 bermanfaat digunakan dalam perawatan kanker, mengukur dan mengontrol aliran fluida pada beberapa proses industri, menyelidiki subterranean strata pada oil wells, dan memastikan level pengisian yang tepat untuk paket makanan, obat – obatan dan produk yang lain.
Cobalt-60 bermanfaat untuk: sterilisasi peralatan medis di rumah sakit, pasteurize beberapa makanan dan rempah, sebagai terapi kanker, mengukur ketebalan logam dalam stell mills.
Sedangkan Tc-99m adalah isotop radioaktif yang paling banyak digunakan secara luas untuk studi diagnosa sebagai radiofarmaka. (Technetium-99m memiliki waktu paruh yang lebih singkat). Radiofarmaka ini digunakan untuk mendiagnosa otak, tulang, hati dan juga mampu menghasilkan pencitraan yang dapat digunakan untuk mendiagnosa aliran darah pasien
Sebagian besar manusia terpapar gamma secara alamiah yang terjadi pada beberapa radionuklida tertentu seperti potassium-40 yang dapat ditemukan pada tanah dan air, dan juga daging serta makanan yang memiliki kadar potassium tinggi seperti pisang. Radium juga merupakan sumber dari paparan radiasi gamma. Namun, bagaimanapun juga, peningkatan penggunaan terhadap instrumentasi kedokteran nuklir (seperti untuk diagnosa tulang, thyroid, dan lung scans) juga turut memberikan andil terhadap proporsi peningkatan paparan pada banyak orang.
Kebanyakan paparan yang terjadi pada sinar gamma merupakan jenis paparan eksternal. Sinar gamma (dan juga sinar X) sebagaimana diketahui sebelumnya- mudah untuk melintasi jarak yang besar di dalam udara dan mampu menembus jaringan tubuh hingga beberapa sentimeter. Sebagian besar dari sinar gamma tersebut memiliki energi yang cukup untuk menembus tubuh manusia, dan memapar semua organ yang ada di dalam tubuh tersebut.
Sehingga dalam kasus sinar gamma, baik paparan eksternal dan internal menjadi perhatian utama dalam proteksi dan keselamatan radiasi. Ini dikarenakan sinar gamma mampu melintas dengan jarak yang lebih jauh ketimbang partikel alfa dan beta serta memiliki cukup energi untuk melintasi keseluruhan tubuh, sehingga berpotensial untuk memapar semua organ tubuh.
Sejumlah besar dari radiasi gamma secara besar-besaran mampu melewati tubuh tanpa berinteraksi dengan jaringan. Ini dikarenakan pada tingkat atomik, tubuh sebagian besar terdiri dari ruangan kosong sedangkan sinar gamma memiliki ukuran yang lebih kecil dari ruang-ruang tersebut. Berbeda dengan partikel alfa dan beta yang ketika berada di dalam tubuh akan melepaskan semua energi yang mereka miliki dengan menubruk jaringan dan menyebabkan kerusakan pada jaringan tersebut.
Sinar gamma bisa mengionisasi jaringan secara langsung atau menyebabkan yang disebut dengan “secondary ionizations.” yakni ionisasi yang disebabkan ketika energi dari sinar gamma ditransfer ke partikel atomik seperti elektron (identik dengan partikel beta) yang kemudian partikel  berenergi tersebut akan berinteraksi dengan jaringan untuk membentuk ion, inilah yang disebut secondary ionizations.

PENERAPAN SINAR GAMMA
Teknologi radiasi menggunakan sinar gamma atau berkas elektron merupakan suatu proses paling bersih dan dapat diandalkan yang paling banyak digunakan dewasa ini untuk memodifikasi bahan polimer. Aplikasi sinar gamma untuk sintesis bahan biomaterial adalah salah satu bidang yang berkembang sangat pesat dalam beberapa dekade terakhir. Beberapa biomaterial yang dapat disintesis dari polimer dengan teknik radiasi antara lain adalah pembalut luka hidrogel, lensa kontak, matrik untuk pelepasan obat terkontrol, katup jantung buatan dan lain sebagainya.
Sejak satu dekade yang lalu Kelompok Bahan Kesehatan, Bidang Proses Radiasi, Pusat Aplikasi Teknologi Isotop dan Radiasi Badan Tenaga Nuklir Nasional telah melakukan penelitian dan pengembangan untuk mendapatkan produk biomaterial dengan menggunakan teknik radiasi gamma. Salah satu produk yang dikembangkan adalah pembalut luka hidrogel steril radiasi. Pembalut luka hidrogel dibuat dengan meradiasi suatu formula campuran polimer hidrofilik berbasis polivinil pirolidon (PVP) menggunakan sinar gamma pada dosis antara 25 sampai 35 kGy. Iradiasi sinar gamma terhadap PVP menghasilkan suatu hidrogel yang tersusun atas struktur jejaring tiga dimensi sehingga menyebabkannya mempunyai sifat berbeda dari polimer induk. Dengan adanya struktur tiga dimensi tersebut hidrogel memiliki sifat yang unik yaitu: Mempunyai kemampuan menyerap air dalam jumlah besar; tidak dapat ditembus oleh mikroba dari luar; bersifat elastis tapi cukup kuat sehingga tidak mudah sobek; permeabel terhadap udara, uap air dan molekul-molekul gas dengan berat molekul rendah rendah; mempunyai ukuran pori yang sangat kecil sehingga dapat mencegah terjadinya kehilangan cairan tubuh secara berlebihan; tidak bersifat toksik, alergik; dapat melekat dengan baik pada kulit dan dapat menyesuaikan dengan kontur luka. Selain itu hidrogel yang dihasilkan sekaligus bersifat steril.
Sinar radioaktif dibedakan menjadi 3 macam yaitu sinar alfa, sinar beta dan sinar gamma. Dimana ketiga macam sinar itu memiliki daya tembus sendiri sendiri. Menurut tingkat intensitas daya tembusnya sinar radioaktif diurutkan dari sinar alfa sebagai sinar yang daya tembusnya terlemah dan kemudian disusul oleh beta yang daya tembusnya lebih kuat dari alfa dan yang terkuat adalah gamma. Cara untuk menangkal ketiga sinar radioaktif itu adalah (sinar alfa ditangkal oleh selembar kertas, sinar beta ditangkal oleh lembaran aluminium dan untuk sinar gamma dapat ditangkal dengan timbal) maka dari itu itulah alasan mengapa para pekerja nuklir selalu memakai baju anti radiasi yang berat dan terbuat dari timbal yang dimana hal itu dimaksudkan untuk antisipasi serangan radiasi sinar gamma.